

Team 18: The Centennial Calendar

Virtual Design Review 1

Team Introduction

Zachary W. Brower Team Leader

Jacob W. Williams Lead ESE

Alyna B. Segura-Sanchez Lead ME

Michael S. Patrick *Financial Lead*

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Project Introduction

Resetting a spring in a watch can be such a hassle.

The faculty of the Advanced Manufacturing Training Center (AMTC) at Tallahassee Community College (TCC) have asked us to tackle this problem.

Project Summary

- Create a calendar that run continuously for 100 years.
- Must utilize all-mechanical workings.

>No maintenance will be required.

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Background

Mechanical clocks are typically driven by a pendulum or mainspring.

- Pendulum
 - A pendulum swings in constant motion with a weight attached to the end
- Mainspring
 - Utilizes a wound, spiral torsion spring to store potential energy

The clock mechanism itself consists of various sized gears and wheels that convert the energy within the train.

Prototypes and Ideas

- > 10,000 Year Clock by Danny Hills
 - No maintenance
 - Expensive
 - Large
- Temperature dependent energy conversion

Reduce frictional forces within the system

Figure 1 – Danny Hills' 10,000 year clock [1].

friction force shear reaction force

Figure 2 – Frictional forces diagram [2].

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Project Scope

Produce a mechanically-powered, aesthetically-pleasing calendar that accurately displays the date and requires no maintenance.

- >Key stakeholders include:
 - The AMTC at TCC and the respective sponsors
 - The team members

Project Scope (cont.)

> Assumptions

- Availability of tools and design software
- Little to no maintenance done on the completed device
- The display will not be tampered with once showcased
- Final design must be able to fit through a doorway

Market

- AMCT faculty (time capsule is cared for by them)
- Clock manufacturers and aficionados

Customer Needs

Table 1 – Customer Needs Translation Table

Question/Prompt	Customer Statement	nent Interpreted Need	
Typical Uses	I need a mechanism that works with no electrical input.	The mechanism is powered using only mechanical processes.	
	I want a mechanical calendar that is accurate to one day.	The mechanism accounts for leap years and non-leap years.	
	I want the mechanism to be aesthetically pleasing.	The internal workings of the mechanism are visible to the viewer.	
	I do not want the mechanism to be costly.	The mechanism uses cost- effective materials without sacrificing quality.	
Likes	I like the layout of the traditional calendar.	The mechanism displays a traditional American date.	
	I would like the mechanism to be self-sufficient.	The mechanism is compact and is powered alternatively.	

Functional Decomposition

Table 2 – Customer Needs Translation Table

	Date Display	Encasement	Energy Management System	Timekeeping Mechanism	Metric
Date Change	\checkmark			\checkmark	Daily (24 hrs.)
Energy Distribution			\checkmark		24 W/day
Energy Replenishment			\checkmark		723 W/month
Energy Storage			\checkmark		844kWH
Movement	\checkmark		\checkmark	\checkmark	100 years
Tamper-proof	\checkmark	\checkmark			TL-40 Rating
Visibility from a Distance		\checkmark			3 m
Weather-proof		\checkmark	\checkmark		IP-55 Rating

BACKUP SLIDES

Functional Decomposition Flow Chart

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Mechanical Power Storage

≻ Mainspring:

Figure 4 – Mainspring diagram [5].

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

≻Pendulum:

References

- [1] Tweney, Dylan. "How to make a clock run for 10,000 years." WIRED. 2011. Web.
- ▶ [2] Types of Contact Forces. "Education 4 All." N.d. Web.
- [3] Woodford, Chris. "Clockwork (windup) mechanisms." ExplainThatStuff!. 2017. Web.
- [4] "How does it work." National Association of Watch & Clock Collectors." N.d. Web.
- ▶ [5] "Gears in every day life!" N.a. N.d. Web.
- [6] "Clocks made with 3D Printed Parts." Stargazers Lounge. Aug. 11, 2017. Web.

